REPORT 1277

INTERACTION OF A FREE FLAME FRONT WITH A TURBULENCE FIELD:?

By Mavurice Tucker

SUMMARY

Small-perturbation spectral-analysts techniques are used to
obtain the root-mean-square flame-generated turbulence veloci-
ties and the attenuating pressure fluctuations stemming from
inleraction of a constani-pressure flame front with a field of
1solropic turbulence in the absence of turbulence decay processes.

The anisotropic flame-generated turbulence wvelocilies are
Jound lo be of about the same intensity as those of the incident
tsotropic turbulence, the lateral turbulence velocities being always
lower, but the longitudinal velocity is somewhat increased for
Jlame-temperature ratios over 7. The small-perturbation anal-
ysis indicates that the incremental turbulent flame speed is a
second-order quantity composed of two paris. One part repre-
sents the root-mean-square area of the turbulent flame front;
the other represents the contribution of the transverse velocity
Jluctuations resulting from the flame-front distortion. Directly
at the flame front, the noise-pressure levels of the pressure
Sluctuations are fairly intense (69 to 81 db referred to 0.0002
dynefsq cm) even at moderate approach-flow turbulence inten-
sities,

INTRODUCTION

Development of high-output jet engines has stimulated
interest in the role played by turbulence in combustion
phenomena. In the earliest studies of flame-turbulence
interaction, Damkohler (ref. 1) and Shelkin (ref. 2) utilized
mixing-length theories of turbulence to obtain semiquanti-
tative relations for predicting flame speeds. Damkohler
introduced the concept that turbulence of a scale large
relative to the flame-front thickness increases the average
flame speed by increasing the instantaneous flame surface
area. The relations of references 1 and 2 were not confirmed
by the experimental values of turbulent flame speed in
Bunsen burners obtained in reference 3. Experiments on
flames stabilized in channels (ref. 4) suggested that approach-
flow turbulence had little effect on burning velocity and that
the disturbances affecting turbulent flame speed were
primerily flame-generated. A similar conclusion was drawn
in reference 5.

In an attempt to obtain agreement between theory and
experiment, Karlovitz, Denniston, and Wells (ref. 6) and
Scurlock and Grover (ref. 7) have incorporated the concept
of flame-generated disturbances in their recent theories of

turbulent flame speed which utilize G. I. Taylor’s one-
dimensional theory of diffusion by continuous movements.
The somewhat arbitrary assumption is made in the analyses
of both references 6 and 7 that these flame-generated dis-
turbances constitute additional turbulence only. In refer-
ence 6 the energy of the flame-generated turbulence is taken
as the difference between the kinetic energy of the burned
gas in the absence of turbulence and the kinetic energy

- obtained by using the average velocity of the burned gas

normeal to the turbulent flame front. In reference 7 the
flame-generated turbulence energy is obtained from &
momentum balance of unburned and burned gases before and
after an assumed mixing of the burned gas.

The data obtained in reference 8 on pentane-air flames
baffle-stabilized in a rectangular duct suggest that the
methods of references 6 and 7 considerably overestimate the
turbulence generated by flame-turbulence interaction. Apart
from the question of validity of such methods of calculating
flame-generated turbulence, objections have been raised
(ref. 9) to calculations of flame speed made on the basis of a
hypothetical wupstream turbulence compounded from
approach-stream turbulence and turbulence generated down-
stream of the flame as was done in reference 7 and implied
in reference 6.

The present analysis is primarily concerned with the
turbulence velocities and other fluctuation quantities associ-
ated with the linearized interaction of a free flame (not influ-
enced by bounding walls) with turbulence present in the
combustible mixture. Such turbulence will be referred to as
approach-flow turbulence. The flame is treated as a dis-
continuity specified by the appropriate fundamental (lam-
inar) flame speed and flame temperature. The interaction
of such a flame front with a transverse plane wave, that is,
a vorticity wave or shear wave, of arbitrary inclination rela-
tive to the front is first analyzed. The effects of an entire
spectrum of transverse plane waves constituting a weak field
of turbulence are then developed from the single-wave
results. The statistical or root-mean-square fluctuation
quantities describing the pressure fields and the anisotropic
flame-generated turbulence resulting from interaction of the
flame front with isotropic approach-flow turbulence are
obtained for the limiting case of constant-pressure combus-
tion. Some discussions of turbulent flame speed and of
combustion noise are also presented.

t Superscdes NAOA TN 3407, * Interaction of a Free Flame Front with a Turbulencs Field,”” by Maurlee Tucker, 1955.
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FLAME—TURBULENCE INTERACTION PROCESS

Turbulent motion may be regarded as a Fourier super-
position of a very large number of different-sized and
randomly oriented component. plane-wave motions. The
customary assumptions concerning the turbulence (see ref-
10) are also made in the present analysis, namely, that
turbulent decay effects are negligible and that the density
fluctuations associated with the turbulence are also small
enough to be neglected. The first assumption, which
implies inviscid flow and very small turbulent velocity
fluctuations, permits linear superposition of the component
waves. With the second assumption, the continuity equa-
tion requires that these Fourier waves be transverse plane
waves, that is, vorticity or shear waves. For each of these
waves the local velocity vector A is perpendicular to the
vector k, normal to the wave front. The vector k is termed
the wave-number vector; its magnitude % is termed the wave
number, which is defined as 2= divided by the wavelength.
All symbols are defined in appendix A. Any one of the
parallel planes containing both the local velocity vector 4

and the wave-number vector k is called the ‘‘polarization -

plane.”

Because of the assumed linear superposition of the com-
ponent waves, the complete interaction results can be ob-
tained from the study Pf the interaction of a plane flame
front with a single-component transverse wave of the turbu-
lence field. For simplicity, this typical vorticity wave will
first be taken as a two-dimensional wave. Generalization
to the three-dimensional case will be made later. The con-
figuration considered is shown in sketch (a):
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A flame front moves with mean velocity Ur into an inviscid
combustible mixture. This mixture is at rest, but contains
a vorticity wave with velocity vector A (components u;,.
and v;,.) and with wave-number vector k inclined at an angle
¢ to the positive direction of the z.axis. In the absence of
any perturbation interaction, the plane front propagates into
the combustible mixture with velocity U (the laminar flame
speed). As indicated in appendix B, the motion of the
burned gas, whose velocity V is constant, is away from the
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flame front. The flame front is assumed to be of infinite
extent in directions transverse to the direction of the r.-axis.

A weak inviseid disturbance field may be resolved into a
stationary component and & moving component, both rela-
tive to the mean local flow (refs. 11 and 12). The moving
component is an irrotational isentropic pressure-velocity dis-
turbance. The stationary component, which is conveciod
by the mean local flow, is a constant-pressure disturbanco
containing any vorticity fluctuations and entropy fluctua-
tions present in the disturbance field. Thus, the interaction
of the flame front with the vorticity wave would be expected
to generate both an irrotational disturbance with velocity
components u,,, 05, and a rotational disturbance with
velocity components u:,s, 0,5, in the burned gas, and an
irrotational disturbance with velocity components up,c, ¥p,¢
in the combustible mixture. The resulting velocity fluctua-
tions, which include both the irrotational and rotational dis-
turbances, are designated as u;, v, and u;, v, for the combus-
tible mixture and the burned gas, respectively. The flame
front is displaced by an amount # (y,) from its mean or
unperturbed position as a result of the interaction.

The diagrams of figure 1, which are similar to those used in
reference 12, may prove helpful in visualizing the interaction
process. Suppose that at some instant ¢, the flame intersects
a front of the vorticity wave at point P, of figure 1(a). At
a later time -6, the flame has moved a distance Ust and
now intersects the stationary vorticity wave front at point
P,. A vorticity wave with front parallel to line @P; is then
produced in the burned gas. A cylindrical sound wave is
generated at point P; at time ¢, and propagates at speed a,
into the burned gas while being convected with velocity — V.
Another cylindrical wave is generated at point P; at time
t, and propagates into the combustible mixture with speed
a.. The cylindrical wave fronts thus generated form enve-
lopes (Mach lines) in both the combustible mixture and the
burned gas, which constitute plane sound waves.

For the wave-inclination angle ¢ shown in figure 1(b),
an envelope cannot be formed on the burned-gas side of
the flame front. The cylindrical sound waves thus
expand independently and are thereby attenuated. On the
combustible-mixture side of the front, the cylindrical sound
waves meet at the common tangent point P;.  For inclination
angles less than the critical angle shown, attenuating pressure
waves are also produced in the combustible mixture until
another critical angle 180°—¢ is reached. Below this
second critical angle, plane sound waves are again obtained.
These critical angles may be obtained from the geometry of

figure 1(b).
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As the flame Mach number 3 decreases, attenuating waves
are produced for a wider range of inclination angle. In the
limiting case of very slow flow (constant-pressure combus-
tion),? only attenuating pressure waves appear in combina-
tion with the vorticity waves if 0°<<(180°. Quantities
associated with the pressure wave vanish when ¢=0° or 180°
because the incident vorticity wave then passes through the
combustion front without distorting the front.
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(a) Interaction for wave-number vector inclinations generating plane
sound waves.

(b) Interaction for wave-number vector inclinations generating non-
coalescing oylindrical sound waves.

Fieunre 1.—Wave formation ariging from interaction of flamme front
with vorticity wave.
SINGLE-WAVE ANALYSIS
TWO-DIMENSIONAL FORMULATION
The interaction process described in the preceding sé¢ction

is now formulated analytically for the passage of a combus-
tion front through a single weak two-dimensional vorticity

31t can bo shown that the static-pressure ratlo across a flame front is given by
pypesl—y(—DABE- . L ..
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wave of constant density inclined to the flame front. The
case of a vorticity wave in three dimensions is considered
later.

The combustion front is assumed to be completely speci-
fied by its laminar flame velocity U and the ratio of stagna-
tion temperatures 7 in the burned gas and in the combustible
mixture, respectively. In the absence of any perturbations,
the equations for conservation of momentum, energy, and
mass-flow rate, respectively, as written for a reference frame
moving with the flame front, are

e =prt U~V

TR, 1., R, 1 .
(ErrE et o
p7=p(U—V)

where subscripts ¢ and b designate stations in the combustible
mixture and in the burned gas, respectively. For simplicity
it has been agsumed that the combustion process does not
entail a change in the number of moles per unit mass of gas;
also, differences in the ratio of specific heats for the burned
and unburned gas are ignored. The quantity (r—1) is then
indicative of the increase in stagnation enthalpy or heat
release.

For the interaction problem the resulting flame-front
distortion #(y,f) must be considered in addition to the
generated disturbances previously mentioned. Thus, both

4
the flame-front perturbation velocity %%EE{ and the instan-
o¢’

taneous flame-front slope M =¢, will appear in the equations
of motion. The conservation equations may still be applied
in a coordinate system moving instantaneously with the
distorfed flame front since extreme gradients occur across
the front and small disturbances are postulated. The
various perturbation quantities (designated by primes) are
assumed to have zero space or time averages. The flame
speed Ur (see sketch (b)) will thus include any time-

—-&0r,1)

E‘B = fonN-E})
|

vy L -Wr+&; - ul)

RS AR

independent contributions arising from the perturbations.
Conservation of normal and tangential momentum, energy,
and mass-flow rate provides the following relations:
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Small-perturbation techniques are used to make the interaction problem amenable to analysis. Then, if the velocity
perturbations are assumed to be small relative to the flame speed Ur and the flame-front slope £, is also assumed to be
very small so that terms of the second order in the fluctuation quantities may be neglected, application of the linear-

’ ! 4
ized state equation %=%I—TT and utilization of equations (1) permit the following boundary conditions at the flame
front to be obtained from equations (2):

Py Py E—ur__p D Ei—e
pb'l'Bl pb"l‘Bz U =B, pc'l'Bz "—U (33)
B=EA B, (3b)
Do P£_+K E; Uy Ka"é"l‘KT,‘l'K( E;—utl: (30)
Do Py P: U
Py IDI i.:;—'ub &Jt—uc_!_]-_& (3d)

where

Py
A2 U=V o, _2U* (U— _U-v @\ H_ U —V
5 (155, un2 (55) 2=l () (1488} Prmplip Ben)

3 - — 2 2
Ki=(r—1) Z—% (%X) E=1"1, %, Kss<°”g§' ) (r—1) % K=(r—1)r %’

a2=vR,T., di=7R,T,

(4)

the local flame-propagation speed is assumed to depend only
upon the temperature of the combustible mixture, that is,

It has also been assumed that the flow upstream of the
flame is isentropic. It will be shown in the section TUR-
BULENT FLAME SPEED that Ur=U is correct through
first-order terms.

Another relation is required at the flame front. For the
two-dimensional case under consideration, the local instan-
taneous normal propagation velocity U+-8U of the dis-
torted flame front into the combustible mixture at rest (see
sketch (b)) is

dU dUu
8U=HTD dT¢=<a-1—-,o T:

With the empirical relation obtained in reference 14 as a
guide, it is assumed that U=r,+r.T7 where ry, r;, and n are
constants which depend upon the fuel and oxidant under
consideration. Thus,

Ur+ti—utv:t,

U+l

VI+&)

The incremental propagation velocity sU will be determined
from existing information on laminar flames. Some sup-
port for this procedure is given in reference 13. As reported
therein, radiant flux-intensity measurements on laminar and
turbulent propane-air flames suggest that a small surface
element of a turbulent flame is chemically and physically
the same as that of a corresponding laminar flame.

The propagation speed of & laminar flame is affected by
both the ambient pressure and temperature. Although
the functional relations have not been rigorously determined,
preliminary indications are that the pressure effect is much
smaller than the temperature effect. In the present analysis

1 ’_. fl'ﬂ S\ — 1 jzm p_‘l: =1 ; d p__;
’ : (2) ”( 27 > *\2 7
and

U(1 44 %‘)W=Ur+ E—uolE)

Correct through first-order terms wherein Ur=U, tho fol-
lowing boundary condition is obtained at the flame front:

E—w_ , P
T——A P (30)

In & coordinate system fixed in space, the equations of
motion for the two-dimensional fluctuation quantities in
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the burned gas with terms of the second order neglected are

ou, Quy 1 op,
Tt
o, Ov, _ 10ps
+Vaxc_ o» OY
be_I_V an+pb avb) 0
T, an )_
Pbcv Y =—+me,V + axc I dy 0

For a coordinate system moving with constant velocity V, -

the preceding equations reduce to the same form as the
corresponding equations for the fluctuation quantities In
the combustible mixture relative to & coordinate system
fixed in space. Thus, the flow equations for both the
combustible-mixture fluctuations and the burned-gas fluc-
tuations may be written, with appropriate subscripts ¢ or
b, an

ow__10p
ot  p Oz
o _ 19y
ot p Oy
dp’ ou’ 0 f ©)
p 2w o
ot ”(ax dy
Vi du’ | o
T aﬁz)J

The coordinate systems xz,y and z,y for the first-order

analysis are indicated in sketch (c).
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A two-dimensional vorticity wave in the combustible
mixture with velocity vector of magnitude A that has its
wave-number vector k inclined at an angle ¢ to the positive
direction of the z,-axis may be written in the form

!

(A sin et E—(—A cos g)e®”

where v=kiz,+ksy, and % and k; are components of the
wave-number vector £ in the z- and y-directions, respec-
tively, with k;/kj=tan ¢. As a result of the linear boundary
conditions of equations (3), obtaining a unique salution of
the interaction problem requires that the arguments of all
disturbance waves match at the flame front. This matching
requirement together with provision for differences in phase
angle yields the following form for the vorticity wave
present in the burned gas:

%(ﬁﬂmw“bmﬂmw

where
Y= (U_%V> k;%‘l‘kiy

Pressure fluctuations generated by the interaction musé
satisfy the following wave equation, with appropriate
subseripts ¢ or b, which is obtainable from equations (5):

W (VP
8 () 0

L

The present analysis will be concerned with the limiting case
of very slow flow (constant-pressure combustion). It is
clear from the relations given for the critical wave-inclination
angles ., . and ¢, that, for very slow flows, only the irrota-
tional isentropic pressure waves described in the section
FLAME-TURBULENCE INTERACTION PROCESS will
be generated by the interaction. The form of these pressure
waves that satisfies equation (6) has already been established
in reference 12 in terms of the variables n and {, where

1.=(f)@.—U?)
Se=beztey+Ud.t
=) [—n+U—-V)i]
H=bytytey+Udt

)

The variable 5 is proportional to the distance from the flame
front. At the front, n,=7,=0; upstream of the flame,
7¢ 1s positive; and downstream of the flame, 5, is positive.
The equation {=constant defines planes moving with con-
stant velocity (Ud).,, at an angle tan™! (¢/b)., to the flame
velocity U. Equation (6) takes the form of the Laplace
equation

m<><zi> 1 <><>’]

Matching arguments of the pressure and vorticity waves at
the combustion front where =0 and satisfying the require-
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ments of equations (8) provide the following values for the

conStaIit-S Of equaﬁons (; )'.
: D : ab
:ZT -[7\‘ b dc 1— n [2

ra—ans BT

A I 2U’
—(UUV> ai J

db=——£{z— b
-7 &
9)

In addition to the boundary condition from equations (3),
the pressure fluctuations will be required to satisfy the

KA
—i—ar® b=

C=Cp= k;x ba

~—

U 2

4
boundary condition %=0 at n=o. Utilizing equations

(36) and (37) of reference 12 yields

%=(Rl+ilfg)e"°"”° (108)

=(JyHiJy)es (10b)
In the combustible mixture, density fluctuations are associ-
ated only with the pressure fluctuations according to the

isentropic relation p——lﬂ In the burned gas, density

c

fluctuations may also be caused by entropy fluctuations
generated by flame distortion and heat-release fluctuations,
if present, as well as by pressure fluctuations. Velocity
fluctuations are associated with both pressure fluctuations
and vorticity fluctuations. It is convenient to deal with
the pressure coefficient p’/p.U:. Thus, the disturbances
arising from the interaction of the flame front and incident
vorticity wave take the following forms:

2(}?1+zli’g)e"=_”=E(R“)+'LR‘”)e"'=-"= (10c)

D _
pU¥ M

=;‘% (SiF i)l n=(JO 43 J D) (10d)

Z‘%‘ ik 3D (LyHAL)e (10e)
_=(]\,71+i]\72)eTr°-“+(G1+iGg)6w (10f)
=(Py+iPe®s (L il (10g)
%; (Wi i) (A sin ge*r (10h)
=(X,+1X,)e* < 7—(A cos p)e'” (101)

The flame displacement velocity may be written
%=(Hl+ng)e‘(k{U'+k;”) =(H,+iH:)é" (10j)
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To satisfy the requirements that the arguments of all dis-
turbance quantities match at the flame front and that
o O
dtdy oyot

, the flame-front slope must take the form
£,=(H,+1H,)(tan ) (10k)

Integration of equation (10j) with respect to time ¢ gives the
flame displacement as

tan ¢

Tk

EXTENSION TO THREE-DIMENSIONAL DISTURBANCES

g’=% (H,—iH oo ="22 (F,—iH e (10L)
1

Equations (10) describe the interaction of a flame front
with a constant-density vorticity wave having velocity com-
ponents

7

7—(A sin p)e*” and —[-]—=( —A cos p)e'”

in the 2z~ and y-directions, respectively. The vorticity wave
may be considered to have a third velocity component

’
Wsye

=(C%e" in the z-direction. In the preceding linearized

. analysis, the amplitude C was not prescribed. This com-

ponent, which is normal to both the %’ and v’ components
and parallel to the plane of the flame front, then is associated
with a corresponding component of the vorticity wave in the

:yb__(y “,
€
U

Inasmuch as turbulence ficlds are three-dimensional, the
interaction equations must be revised accordingly for applica-
tion to the spectral analysis which follows. Assume, as
shown in sketch (d), that the polarization plane which will
contain the wave-number vector k is inclined at some angle 8
to the ,,.,2:,.-plane of a new coordinate system 2i,c, 23,c, T3,e
fixed in space for the combustible mixture.

burned gas

*2,¢

¢

/ Xc, xllc

X3¢

1d)

The corresponding coordinate system i,,, ¥a,s, 73,5 for the
burned gas is assumed to be moving with mean flow velocity
V. Components k;, ki, and & of the wave-number vector k
in the directions of 2i,c, 21,c, and 3,6, respectively, are

ki=k cos ¢
o=k sin ¢ cos (11)
ks=F sin ¢ sin 6 '

With primed perturbation vector quantities referring to tho
original coordinates z., 5, ¥, z and unprimed perturbation
vector quantities referring to the i,c, T2,c, T3, 80d T1,5, T250,
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z3,5-coordinate systems, the following transformation rela-
tions apply:
Uy, =U Uy = R

Ug, =, COS —w, 8IN 6 Uy =, cOS §—w)} sin §

Uz =}, 8in §+w} cos §
=t

E,=E;
bry =k, cOS0

&1.4::5;' sin 0 J

Uy ,~v, sin 84w, cos §

- (12)

This notation refers only to equations (12).

With the use of equations (10) and (12), the interaction
fluctuation quantities (again designated by primes) referred
to the coordinate axes &1,., 22,c, %3,c and 21,5, 2,5, Z5,, May be
written as

;%:(R(l) +7:R a))e’rc—"h

;_?%’b]_z=( JO 44 JD)elEsm

Bl (Birt iR

B _L (Jiin) et (T i L) e
Py Y

%LS:(WrI-fWa)e"“"%(A sin p)e'”

%:(X,—l—ng)(cos 0)e*~—(A4 cos p cos8--Csin 8)e'r
%=(X1+’l:X2)(Sin 0)e®<™7e—( A cos psin 6—C cos 6) e’ T (13)
%B=(Nl+iN,) 55 (G +iGh) et
%'—"=(Pl+iPa) (cos )65+ [(1y+iJs)cos 0— C'sin 6]et*
'1%2=(P1_|_?'P’) (Si.ll 0)6!“—’""'!' [(II—I—'Z',IQ) sin 0+0 CcoS8 0] e
& im) e
U 1 2
&z, ~(Hi+iHy)(tan ¢ cos 0)e'
E;S. c=(H1+’Z',H2) (tan %] sin 9) éte
$,=(Hg—iH1) ele
1 ~

The fluctuation amplitude coefficients of equation (10) or
(13) may be determined from equations (3) and (5). Details
of the solution are given in appendixes B and C. The general

solution for the attenuating pressure-wave regime is indicated

mn appendix B. Inasmuch as the flame Mach number M E[—J

is generally much less than 0.01, the limiting case of very
slow flow (constant-pressure combustion) provides a reason-
able simplification of the problem and only the attenuating-
wave solution need be considered. The amplitude coeffi-
cients for this limiting case are given in appendix C (egs. (C8)).

Equations (13) and (C8) describe the linearized interaction
of a constant-pressure flame front with a single vorticity
wave or shear wave having its wave-number vector k inclined
at an angle ¢ to the direction of travel of the undisturbed
flame front and having its plane of polarization inclined at
an angle 6 to the z,,, 2;,-plane of the coordinate axes z,.,
T3y, 3. The wave-number vector of the shear wave
generated in the burned gas makes an angle @,=tan™!
(7 tan ¢) with the direction of propagation of the undisturbed
flame front. Attenuating potential fields are generated in
both the combustible mixture and the burned gas. Physical
quantities associated with these fields attenuate exponentially
with increasing distance from the flame front. The ampli-
tude coefficients for a given heat release (a prescribed 7)
and a given inclination angle ¢ and a polarization angle 6
depend upon both the intensity of the incident vorticity
wave and the heat-release perturbation parameter +//r. In
the absence of such heat-release perturbations, there are no
density fluctuations in the burned gas (correct to order A?).

These single-wave results may be used to determine the
interaction of a constant-pressure combustion front with
turbulence field of constant density for the case of negligible
turbulence decay. The turbulence field will contain an in-
finite number of transverse plane waves with all wavelengths
and planes of polarization. The spectral analysis technique
used in obtaining such a superposition of waves will be dis-
cussed briefly before proceeding with the interaction problem.

SPECTRAL ANALYSIS
GENERAL CONSIDERATIONS

A turbulence field satisfying the incompressible-flow con-
tinuity equation may be represented by the following super-
position of plane transverse waves:

w(z, 1) f} | exxaza,0

where z is a position vector, k£ is & wave-number vector, ¢ is
the time, and dZ(k,t) is the random amplitude vector of a
component wave. The quantity dZ(k,)e** represents the
contribution to the velocity field from a volume element di
in wave-number space. When, 2s in the present case, the
equations of motion are linear there is no modulation or
interference between component waves, and the various sta-
tistical quantities describing a random field may be obtained
from the results of a single-wave analysis. To avoid the
interpretative difficulties associated with the random variable
Z(kyt), which is nondifferentiable with respect to k, use is
made of the techniques of references 10 and 15, which utilize
correlation spectra rather than amplitude spectra in the
analysis of homogeneous turbulence.
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A velocity correlation is defined as the ensemble average

wy(z,D)uy(z’,t) of the product of a fluctuation-velocity com-
ponent u; at z and & component u; at z'=2z-+1 where 7 18 &
separation vector. The subscripts ¢ and j take on the values
1, 2, and 3. The ensemble average, designated by a bar,
may be regarded as the result of averaging the product
uy(z,t)us(2,f) at & given instant over a very large number of
statistically similar fields. The nine velocity correlations
wuy constitute the velocity correlation tensor Ty(zz',1).
For a homogeneous field, T, depends only on r so that the
tensor may be written T'y(r,i).

As shown in references 10 and 15, the velocity correlation
tensor has the following Fourier integral expansion:

T r,t)— ﬁfeﬂz-v AF (k)= ﬁ f Ao, (kO (14)

where Fy(L,t) is the spectral tensor function, &4kt is the
spectral tensor density of a homogeneous turbulence field, and

&, (k,t)dk=dZ;(k,)dZ,(k,?) (15)

where dZj(kt) denotes the complex conjugate of dZ.(k).
For r=0 and i=7, equation (14) may be written

Tu(o,t)=u_3=ff f AZ @, 1)AZ (k1) (16)

For homogeneous turbulence fields, wherein ensemble aver-
ages and space averages are identical, equations (15) and (16)
provide the basis for obtaining the spatial mean-square
velocity components from the single-wave results given by
equations (13) and (C8). Equations (15) and (16) are also
applicable to scaler fields. In the absence of viscosity, as
postulated, the shear-velocity fields present in the com-
bustible mixture and in the burned gas are homogeneous,
and application of equation (16) presents no complications.
The corresponding potential-flow fields, although spatially
inhomogeneous, are homogeneous in the given zzs-planes.
It has been shown in reference 16 that equation (16), in
effect, may be applied for such fields to obtain the mean-
square fluctuations pertaining to a given plane of homo-
geneity.

As a result of the preceding discussion, the single-wave
interaction results for constant-pressure combustion will be
used to obtain the spectral densities of the fluctuation
quantities at the flame front where the attenuation factors
e—7 and e-w are unity and {o=(p=oc=y=r. For concise-
ness, define RA sin o=R®+iR®, WA sin o=W,+1Wy,

GA sin o=G,+1G,, NA sin p=N,+iN,, HA sin o=H,+1H,,
and C'4 sin ¢=C. With the notation

u%, s, = fffa_z—l. 3 a_Z_l, c
and, for example, )
-— ¥ % 7
Pe Y= De < Ds >
(ch"’> I_ [ f d (ch i) d pU?

as in equation (16), the following equations are obtained by
analogy with equations (13) and (CS8) for the case where
heat-release perturbations are absent, that is, 7'=0:

1 (L )~4 (=R iz

d (1%»)=Wdzl,o+dzl,c

EN

d (ué'c)=-iW cos8dZ;,.—(cot ¢ cos 0+C" sin 6)dZ,.
d (%'_c>=_iWsin0 dZy,.—(cot ¢ sin 6—C" cos 6)dZy,
d (‘%‘J>=N le.c+G le-‘

L an

d(”%” =iN cosedzl,c—(go—t-%w—w @+ sin0> dZy.

d u-l’]—” =’Z:N5i.n.0le,c—<92t—¢;in—oa—010030)dZ1,¢

N iH g _H
d(E )_' k; le, e k cos ¢ 1.c
d % —HdZ,,

d(E’,’_°)=H tan ¢ cos 8 dZ, .

d(&, )=H tan ¢ sin 6 dZ,,. )
In the velocity ratios of equations (17), the first term on the

right side represents the potential-flow contributions u_‘i;u

or u'b’:b; the second term represents the shear-flow contri-
butions u'['}" or %’—3 The subscript 7 takes on the values
1, 2, and 3.
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At a given instant the spatial mean-square potential- and shear-flow contributions of the disturbance fields are obtained

from equations (17):

(Za)=(Zs) fff(R*R)dZ* iz
(%) +(%) = f_ f (@@ 77z

() =) +(%)=. f [ 2z
m - f C XA

GG -GG [ (e

(’ul. 20\ _ (’uz »,
U U

The mean-square flame-front quantities are

From equations (C8) of appendix C with 7'=0:

(r—1)¥(r tantp—1)? )
A sin®p

W (r—1)*(r tan®p—1)*
A

R*R=

__ 72 sec®p [A—4r(r*—1)tan’y]
@@= A(+7? tanp) L (9

73 (r—1)%(r tanp—1)% sec?p
NN AT+ ton’e)

472 gec?
AT BCCe

H*H= A

J
MEAN-SQUARE FLUCTUATIONS FOR INITIAL ISOTROPIC TURBULENCE

For a given combustion process (r and U prescribed), the
spatial mean-square fluctuations of equations (18) depend

436876—H7——40

) +<u_&[j,,,_b>’= f_ f f (N*N) 3ZF .37,
ONIEEE S

?=f_ﬂ,§,€0§>dzr iz,

i H [[caem vy 378 07

(18)

—"

o

upon the quantity dZ},. dZ,,., which is specified by the type
of turbulence present in the combustible mixture. The
results obtained in reference 16 for the interaction of axi-
symmetric turbulence with a shock wave suggest that for
the present problem, the degree of anisotropy of the incident
turbulence field may not be critical. For simplicity, the
turbulence in the combustible mixture is assumed isotropic.
As indicated in reference 10, the spectral density ten-
sors for any isotropic turbulence field satisfying the
incompressible-flow continuity equation are

@4, (B)=Q(k)(k%61;—kiks) (20)
where k*=ki+k+i; 86,=1 for i=j; 8,=0 for 17%j; and

Q(k) is the scalar amplitude function defining the spectral
density tensor. From equations (15), (20), and (11),

¥ 0dZy, =Q(k)i?sin? o dlf
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or, transforming to spherical polar coordinates %, 6, ¢, wherein
dkadkl dkg d.ka=“k'2 sin [%] dk da dtp, yields

¥ dZ, =k dk df sin® o do
¥ . dZ, =Q(k)k* dk df sin p[cos? ¢+sin® ¢ sin? 6]de

2,¢
- (21)
dZ% . AZs, .= Q(k)k* dk d6 sin [cos? p+-sin? ¢ cos? 6]de ‘r
dZ% .dZ, +dZ% . dZs = Q(k)k* dk dF sin [1+-cos® ¢]de

The mean-square velocity components of the incident 1so+
tropic turbulence field are then given by

- oo o
0 o o 3J o

(Qiﬁ£>2+<%'—°>2=f ) Qi d]cﬁazr de ﬁ ) sinp(1+cos? p)de (1
_%’ ik dk |
&

referred to the intensities of equations (22) in order that th

The remaining spatial mean-square fluctuation quantiti&?
scale need not be specified, are given by

Gt
] )
o) )

’ud 3,0
( 37’2 *[A—47(*—1) tan? ¢] sin p tan?, ‘
A+~ tan’e) de (23¢)

() |

!

(=17 [ "B (+ tante—1)de (230)

3

T o3
1)? fo S8 rtantp—1)de
(23b)

——————
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L " ok

(uq['jﬁy"'(%ﬁ—'b)z: _§( _l)f'(A+4rsec’¢)sin3¢ o
1,2 2
B+ T T
() (o))
) (%)
[ Ut 4y g
(&Y
(S«U))"‘”‘”L' mEPEL, @
(Zj)& 3#L' tanesine g, (23g)
U
%5 0 f QRyedk f Asi;asfqp 4o (@)
(%)

The subscript 1 designates a longitudinel component; sub-
scripts 2 and 3 designate the lateral components. Of the re-
maining subscripts, 8 denotes a shear-flow component; p
denotes a potential-flow component; ¢ refers to the combusti-
ble mixture; and b refers to the burned gas. Equations (23a)
to (23g) bave been integrated numerically using Simpson’s
rule with the following increments for =: 2° intervals from
0° to 20°, 5° intervals from 20° to 70°, 2° intervals from 70°
to 90°, and so forth. Numerical results are listed in table 1.

|
TABLE I.——FLAME—TURBULENCTNTERACTION FLUCTUATION RATIOS

1 1
B1a.)? Used\3 [ Hiwb\? U3\ * Uiipeo D \? E\? B® g _Ute, e
\/(U) \/(U)+( ) \/( ) \/ )’ .U (% factts, A
T
Bra.e)? a3 [ Wa.o\? ti.e\3 rZTrnt TAY [TAY Ulease Utoa\?
+ .8
(U) (U)(U) (U) \(U (U) (U (U) (U)
(eq. (232)) (eq. (234)) (eq. (2Be)) (e#. (b)) (eq. (23a)) (eq. (230) (eq. (238)) (cq. (26))
|

1 1.0000 1.0000 0 0 1.0000 o 1. 0000
L5 . 8868 8380 | el e 3[ __________________________________ 6. 0062 1.9563
2 . 8814 9120 024 838 T7148 8109 22942 1.4270
225 | e | e | e + R IR 1. 6501 1.2620
3 -9103 8904 8235 7823 8358 T4688 L7974 L0439
3.5 ] . . ~5559 .8008
5 .96768 8772 . 325 . 8604 J0418 . 3307 L2521 . 8697
7 1. 0087 877 .0878 . 8036 .0343 L2509 L1238 L4034
10 1.0452 . 8700 1.0362 L 9234 1.0397 -1995 .0502 L2884
15 1.0833 - 862 10788 . 9463 10813 L1482 . 0260 . 1930

™ L2247 - 8660 12247 0000 L2247 0 0 0
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DISCUSSION OF RESULTS

Mean-square fluctuation quantities generated by the
linearized interaction of a constant-pressure combustion
front with a weak isotropic turbulence field satisfying the
continuity equation for incompressible flow are given by
cquations (23) in terms of the incident-turbulence-velocity
components. Equations (232), (23b), and (23e) apply only
at the flame front where the attenuation factors are unity.
This restriction does not apply to equations (23c) and (23d)
in the assumed absence of turbulent decay processes.

VELOCITY FLUCTUATIONS

Potential-flow fluctuations.—The root-mean-square ve-
locities associated with the attenuating pressure fields gen-
erated in the combustible mixture (eq. (23b)) and in the
burned gas (eq. (23e)) are plotted in figure 2. Since these

T T T T L T T T
4
{eq. (230))
She':;(r:i - Efelsow
3,55\2 velociti -
+ f&
(eq. (23d))
(03'5 :)2
+ '——U |
(eq. {23e) ) 7
Polential-flow velocities B
{eq. (23b))
n
1.2
1
2 ——
-’é‘.g _/_:’""n'—-—
510 =T
é,g ~L /,// o R T e I
5 - e a1 1 1
-% //_,/—
g2.8 L
E v
3 /
[+ 4
6 3 5 7 3 T 13 5

Flame-temperature ratio, T

Fravne 2.—ILffect of flame-temperature ratio on shear-flow and
potential-flow velocity fluctuations.

ratios apply only at the flame front where the exponential
attenuation factors are unity, they represent maximum values.
As is to be expected from the boundary-condition require-
ment of equal pressure fluctuations with differing densities
on each side of the flame front, potential-flow velocity com-
ponents in the burned gas exceed those in the combustible
mixture. Both ratios increase with increasing flame-
temperature ratio, reaching asymptotic values of «/%/T‘Z in the
burned gas and 1 in the combustible mixture. Hot-wire in-
strumentation will respond to these fluctuation velocities as
well as to the shear-flow fluctuation velocities. In view of their
exponential attenuation characteristics, however, such con-
tributions would not be of importance unless measurements
were made at stations very close to the flame, that is, within
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a distance of the order of incident-turbulence scale. For
the low flame Mach numbers encountered in combustion, the
contribution to the hot-wire signal voltage of the unatten-
uated sound waves described in the section FLAME—
TURBULENCE INTERACTION PROCESS should be
quite small.

Flame-generated turbulence.—The shear flow in the
burned gas (eqgs. (23c) and (23d)) constitutes the flame-
generated turbulence occasioned by the presence of approach-
flow turbulence. These velocities, referred to the incident
turbulence velocities, are also plotted in figure 2. A slight
amplification of the longitudinal component occurs for
values of 7 over 7. In the limit, as 7 becomes very large the
longitudinal and lateral velocity ratios approach asymptotic

values of 4/3/2 and % /3, respectively.

The diagrams of figure 1 indicate that a pressure wave
interacting with the flame front can also bring about a shear
flow in the burned gas. Although the reflection and the
consequent impingement of the pressure fields described by
equation (23a) upon the flame front are possible, any addi-
tions to the flame-generated turbulence level through the
reflection process would probably be negligible because of the
attenuating nature of the pressure field. Thus, contrary to
the predictions of references 6 and 7 that the flame-generated
turbulence intensity should be many times greater than the
intensity of the incident field, the present analysis indicates
that the two intensities are about equal.

It is interesting to note that a stream contraction (ref. 17)
increases the downstream velocity of the mean flow (as does
the flame front also) while exercising a different selective
effect upon an incident isotropic turbulence field. For ex-
ample, with. a sevenfold increase in the downstream velocity
of the mean flow, the longitudinal velocity ratio (in the ab-
sence of decay effects) is 1.01 for the flame front and 0.31
for the contraction. The corresponding lateral velocity
ratios ave 0.87 and 2.29, respectively.

TURBULENT FLAME SPEED

The higher mass-flow burning rate of a turbulent flame as
compared with that of the corresponding laminar flame is
generally described in terms of a turbulent flame speed Up.
The flame-speed ratio Ur/U is generally assumed to be
equivalent to the ratio of turbulent-to-laminar flame surface
area.

Calculation of the turbulent flame speed requires con-
sideration of second-order terms. The local instantaneous
normal propagation velocity U-38U of the distorted flame
front into the combustible mixture at rest is

Upt-bimth, o8 05 A5y 05 o
\ 1+E"§,c+§’§.c

Let Up=U-+ U+ Ux+ . . . where Uy represents a steady-
state contribution to the flame speed of order N. The
perturbation quantities, for example, are written as

E=H+E+ . ..

Uy =ul Aullet . ..

U4-sU= (24)
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The superscript on a fluctuation quantity £ indicates the
order of the perturbation. As before, 8U/U is taken as

U _nre T2 T,
u U T.

(7'— 1)””‘2 n— 2-" ¢
‘\/'—Y_R: (T t:) M cl’]’:

rp“

Substitution of this expression into equation (24) and per-
forming the indicated expansions yield the following rela-
tion, which is correct through second-order terms:

)+{

ﬁrst—order
terms

RN ,)’]}

second—order terms

1 T
1,8 Ui

=\t T
— J

U IL IIc 1 c 1 c
Y R TR Ei,,c>

J

Y Y
first-order second-order terms

terms

I I 3r '~ .
—heg, Sl f {[-rcr—l) tant p+(r*+1) tan? p+(r+1)] Sm; “’+iQ}d«°

The imaginary term has not been written out inasmuch as
it does not contribute to the integral. The results of the
indicated integrations are listed in table I.

Equation (25) for the flame-speed ratio Uy/U may also
be written in the form

Ur

_1+Su’13t

@7

where the flame-speed parameter S is obtained from the
values listed in table I from equations (23g) and (26). The
variation of this parameter with the flame-temperature
ratio = shown in figure 3 suggests, on the assumption that
the flame-front slopes &, , and &, , govern contributions to
the right side of equation (25), that the flame front with the
higher heat release is distorted less by a given intensity of
turbulence. For the degenerate case 7=1 (no heat release),
the parameter S becomes infinite—a condition compatible
with this viewpoint.

The present analysis requires that the flame-front slopes,
as well as the other perturbation quantities, be small. The
preceding discussion suggests that the incremental flame-
speed ratio (Ur—U)/U may be of the second order as a
result of this restriction to small flame-front slopes.

COMBUSTION NOISE

The root-mean-square pressure-fluctuation coefficient
—\/z?/ch?, which applies directly at the flame front, is
plotted in figure 4 for the limiting case of constant-pressure
combustion. The pressure fluctuations are a measure of the
random noise generated by the interaction of the flame front
with the incident turbulence. In acoustical measurements,
the noise level in decibels is usually given with respect to &
reference pressure of 0.0002 dyne per square centimeter

e e ————
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Averaging this equation yields

Us
Z=0

— —

er B L [ P+ ) ]2 8

ﬁ E:aj‘

Tor the limiting case of constant-pressure combustion, I'=0.
Thus, the ratio of turbulent-to-laminar flame speeds can be
written for this case as

Ur

4l
21 C 3 o 23 O) (25)

The first two terms on the right side of equation (25)
represent the ratio of averaged turbulent-to-laminar flame
surface area. The third term is & correlation coefficient
representing the transverse-velocity-fluctuation contribu-
tion to the turbulent flame speed caused by flame-front
distortion. It is interesting to note that only the trans-
verse velocity fluctuations appear explicitly. The second

—1 [(, )+ (8, )1 —( &

term has already been determined (eq. (23g)). The third
term may be obtained from equations (C8) as
(20)
1.4
1.2 \
© 1.0 A
g.
SN
i
& -
E .
Rl N
N
\\
4
~
|~
\\\
23 5 7 9 i 3 5

Flame-temperature ratio, T

Figure 3.—Effect of flame-temperature ratio on flame speod for
incident isotropiec turbulence.

(vef. 18), which corresponds approximately to the pressure
amplitude of a plane sound wave of minimum audible
intensity at a frequency of 1000 cycles per second. The
noise-pressure level in decibels iz defined by the relation

Noise-pressurelevel =201og, (O‘(é;);) =74+-20loguo ﬁ (28)

where the pressure fluctuations in the combustible mixture
are given in dynes per square centimeter.




INTERACTION OF A FREE FLAME FRONT WITH A TURBULENCE FIELD

611

TABLE II.—HYDROCARBON-AIR FLAME DATA AT SPECIFIED CONDITIONS
[Btatic pressure and temperature of combustible mixture, 760 mm Hg and 25° O, respectively.]

Propane, CyHg

Ethylene, CaH; Acetylene, CsH3

—

Atstoichlometric

At maximum U | Atstolchiometrie| At maximam U | Atstoichiometric| At maximum U

Fuol-alr ratlo 0. 0638
Fuol in afr, percont by volume 4.04
Laminar flamo speed, U, cm/sec 3.5
Adiabatic flame-temperature ratio, r. 7.70

0711
b4
45

0757
.65 .

00

75 10.70
141
64 871

0753 0. 1040
5

©8np
oo

0. 0

4, 6. 54
39 64

7. 7.95

1/

N

Root-mean-square noise pressure - fluctuotion coefficient,

2 4 6 8 10 12
Flame-temperature ratio,

Fraurp 4.—Effect of flame-temperature ratio on random pressure
fluctuations generated at flame front.

Equations (23a) and (28) indicate that the noise level
should be particularly dependent upon flame speed. Propane-
air and acetylene-air combustions, which are character-
ized by ‘a low flame speed and a fairly high flame speed,
respectively, will be considered for illustrative purposes.
Pertinent data for these flames at maximum-flame-speed and
stoichiometric conditions for an ambient temperature of
25° C and a pressure of 760 millimeters of mercury are given
in table II. The adiabatic equilibrium flame temperatures,
at which the total enthalpy of the fuel and oxidant equals
the total enthalpy of the products of reaction, were calcu-
lated using the procedure of reference 19. (Total enthalpy
includes the chemical contributions to the internal energy.)
TFlame-speed data were obtained from references 20 and 21.

If the flame-front turbulence intensity 42 , /U is assumed
equal to 10 percent, noise-pressure levels of 59 and 81 decibels
are obtained for propane-air flames and acetylene-air flames,
respectively, under conditions for maximum laminar flame
speed. At an approach-flow velocity of 1225 centimeters per
second, which is in the range of velocities usually encountered
in combustion experiments, the corresponding intensity of
the approach-flow turbulence would be about 0.3 percent
for the propane-air mixture and about 1 percent for the
acetylene-air mixture.

Thus, the pressure fluctuations generated at the flame
front when the incident turbulence is of low intensity,
although small compared with ambient pressure, are appar-
ently of fairly high acoustical intensity for constant-pressure
combustion. Because of the exponential attenuation of
these pressure fields, the ‘“far-field” acoustic intensity (the
intensity at distances very far from the flame front) ap-
proaches zero. For cases other than constant-pressure
combustion, & finite “far-field’”’ intensity is obtained.

CONCLUDING REMARKS

The present linearized analysis has treated the interaction
of a field of isotropic turbulence with & free flame front under
constant-pressure combustion conditions with no turbulence
decay processes or hest-release fluctuations. The interac-
tion produces an anisotropic turbulence field in the burned
gas which has axisymmetry about the mainstream direction.
Contrary to the results predicted by several current theories
of turbulent flame speed, the flame-generated turbulence
velocities caused by approach-flow turbulence do not differ
greatly from the turbulence velocities of the incident field.

The incremental flame-speed ratio (Ur— U)/U as obtained
from the present analysis is a second-order quantity con-
sisting of two parts. One part represents the root-mean-
square area of the turbulent flame front; the other represents
the contribution of the transverse velocity fluctuations which
result from the flame-front distortion. The flame-speed
ratio Ur/U for a given level of incident turbulence intensity

NuZ,./U is found to decrease with increasing heat-release
rates (increasing values of 7).

Random pressure fluctuations generated in both the com-
bustible mixture and the burned gas, although small com-
pared with ambient pressure, give rise to appreciable noise
levels (59 to 81 db) directly at the flame front even for very
moderate intensities of approach-flow turbulence (flame-
front turbulence intensities of 10 percent). For the limiting
case of comstant-pressure combustion, the pressure waves
attenuate exponentinlly with distance from the flame front,
go that the ‘“far-field’”’ intensity approaches zero.

Lewis FrigeET PRrOPULSION L.ABORATORY
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS
CreveLanp, Omro, January 26, 1966
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APPENDIX A
SYMBOLS
magnitude of two-dimensional vorticity- | R
wave velocity vector in combustible mix- | R,
ture R]_,Rg
two-dimensional vorticity-wave velocity vec-
tor in combustible mixture R® R®
speed of sound T
coefficients defined in egs. (4) LT3
constant defined in eqs. (7) and (9)
amplitude of combustible mixture shear-
wave component parallel to z, —axis S
constant defined in eqs. (7) and (9) T
specific heat at constant pressure Tyl(r,t)
specific heat at constant volume
U/[(U—V), egs. (4) Ts
constant defined in eqs. (7) and (9) t
—V/U, eqs. 4) U
spectral tensor function Ur
constant defined in eqs. (7) and (9) v
(G+1Gy) /A sin ¢
amplitude coefficients of shear-wave longi- | wuy ., Us.c, Us .
tudinal component in burned gas
(Hi+1H;)[A sin o
amplitude coefficients of flame-front dis- | wuy 0, usp, %s»
placement
groupings defined in eqs. (B16)
amplitude coefficients of shear-wave trans- | V
verse component in burned gas Vo
amplitude coefficients of pressure wave in
burned gas v’
= P 5. 505 P w
JV= PRaE Ji; J =T J2, eq. (10d) W, W,
coefficients defined in eqs. (4)
magnitude of wave-number vector &
wave-number vector of shear wave in com- | 4
bustible mixture with components kik;
in .y-coordinate system, with com-
ponents ky, ks, k3 in zy, , Zs,c, Xz ~coordinate
system X, X,
amplitude coefficients of density associated
with shear entropy wave in burned gas
flame-front Meach number, M= Ula, z
a/v U, eq. (B16) n
(N1+7:N2)/A sin ¢
amplitude coefficients of longitudinal ve-
locity component associated with pressure :c
wave in burned gas ¢
exponent used in representation of laminar
flame speed as function of combustible-
mixture static temperature
amplitude coefficients of lateral velocity com- | 12
ponent associated with pressure wave in
burned gas
static pressure
static-pressure perturbation T2,0
term not contributing to the integral in
eq. (26) T35

(RP+R®)[A sin o

gas constant

amplitude coefficients of pressure wave in
combustible mixture

RO =R,[yM* R®=R,[yM?, eq. (10c)

separation vector

constants used in representation of laminar
flame speed as function of combustible-
mixture static temperature

flame-speed parameter, eq. (27)

static temperature

velocity correlation tensor for homogeneous
turbulence

stagnation temperature

time

laminar or fundamental flame speed

mean turbulent flame speed

longitudinal component of velocity perturba-
tion

velocity perturbation components in com-
bustible mixture parallel to .2, .3,
coordinate axes, respectively

velocity perturbation components in burned
gas parallel to ;5,22 5,23 5-coordinate axes,
respectively

mean velocity of burned gas

mean velocity of burned gas in turbulent
combustion

lateral component of velocity perturbation

(W1 +1W3)[4 sin ¢

amplitude coefficients of longitudinal veloc-
ity component associated with pressure
wave in combustible mixture

lateral component of velocity perturbation
(component parallel to plane of unper-
turbed flame front and normal to %/ and
v’ components)

amplitude coefficients of lateral velocity
component associated with pressure wave
in combustible mixture

position vector

coordinate in x,,y-system measured in direc-
tion of unperturbed flame-front travel
relative to which burned gas is at rest

coordinate in z.y-system measured in direc-
tion of unperturbed flame-front travel
relative to which combustible mixture is
at rest

coordinate in 2z 1,%s s-8ystem measured
in direction of unperturbed flame-front
travel relative to which burned gas is at
rest

coordinate orthogonal to z;, and =z, , and
making angle 6 with y-coordinate

coordinate orthogonal to =, , and x ,



INTERACTION OF A FREE FLAME FRONT WITH A TURBULENCE FIELD 613

2, coordinate in .2, %, -system measured | &,

in direction of unperturbed flame-front

travel relative to which combustible mix- | £,

ture is at rest
29,¢ coordinate orthogonal to ;. and z,. and &

making angle 6 with y-coordinate P
23,0 coordinate orthogonal to z;, . and 2 . e’
Y coordinate orthogonal to z, and z, o
dZ(k,t) random amplitude vector of shear-field | -

Fourier component &4k t)
z coordinate orthogonal to z, and y o
ane . . . a5 grouping defined in eqs. (B18)
. (r—DnrA T 3M

VB, 14

¥ ratio of specific heats Q
A 7 (r—1)%an*e+ 27 (7 4-27— D tan?p+ (r+1)2
8,0, . . . 8§  grouping defined in egs. (B24) Subseripts:
e, . . . &g  grouping defined in eqs. (B21) b
I'e variable upon which pressure wave depends, | ¢

eqgs. (7) er
” variable upon which pressure wave depends, | ?

eqs. (7) 8
0 angle between polarization plane of incident %’]21’3

shear wave and 2y, .2, .-plane S’ o

. . uperscripts:
A coefficient defined in eq. (3e) 1.II
4 k'lmo-l_klﬁy *’
(y,t) flame-front displacement ’
f flame-front displacement velocity
APPENDIX B

flame-front slope with respect to x, ~coordi-
nate

flame-front slope with respect to z; ~coordi-
nate

flame-front slope with respect to y-coordinate

static density

static-density perturbation

ki Ut+-kay, eq. (10j)

flame-temperature ratio, T »/Ts, .

spectral density tensor

angle between wave-number vector of inci-
dent shear wave and direction of unper-
turbed flame-front travel, tan o==ki/ki

U / ‘

<ﬁ ks tkay

scalar amplitude function defining spectral
density tensor

burned gas

combustible mixture

critical

potential-flow velocity component
shear-flow velocity component
orthogonal coordinate designation
designates order of steady-flow quantity

designates order of fluctuation quantity

denotes complex conjugate

denotes fluctuation quentity except where
otherwise specified

ATTENUATING-WAVE SOLUTION FOR SINGLE-WAVE INTERACTION

The arguments of the various fluctuation quantities are
equal at the flame front where z,=Ut and z,={U—V).
Therefore, substituting equations (10) into equations (3)
and (5) and separately equating the real terms and the
imaginary terms provide the following set of equations:

-

Ji (1 +%)+BIL1—32NI—BZGI=
—B,A sin o—B;W,+B,R, - (B1)

Ja (1 +%>+B;L2—32N2—Bzga=_BQW2+BaR2 J

~

Ji (1 —,%)—LI—KINI—K,GF—KM—
KA sin ¢+K2R1+K37'/_(K1—K4)H1

Jy (1 —,%)-La—KlNa—ch;'z:
—E W+ K, B, —(K,—K)H, |

> (B2)

;
2 i+ LD —DH—DiN,—D,G=

% J2+L2+(D1—1)H2'—D1N2—D1G2=—m—l-;]; R’

o

PA+L=X,—P1 4 sin ot Bp 7,
1

k;
. (B4)
P2+12=X2+k_? E1H2
1 (557 ) MimdNs=m¥(— it b
~ (B5)
a1, (Y57 ) Numm(—buTi—fu
—f <UEV> Py—dyPo=m?cy ],
(B6)
&Pi—5 (UEV>P2=—m20bJ1
—]Cl <%7 Gg=k2I3
B7

_kl (%7 G1=]£2I1
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S =AW= G BB R
. (®8)
ch'I'fc 2=W (_ bcR1+foR2)

1 X~ d X = 0By
. ®9)
doX1+foX2= YL c. R,

Hl_Wi_A sin §0=AR1
(B10)

H,—W;=AR,
From equations (B5), (B6), (B8), (B9), and (B10),

N1=h1(’laJ1_haJa)
(B11)

N2=h1(]l3J1+hsJ2)
P1=h1(—h4J1—h5Ja)}
B12)

P 2=h1(h5J 1—h4J 2)

Wy=ho(hsRy+hsRo) }
(B13)

2=hﬁ(_h8Rl+hﬂR2

X1=ha(—h,R1+hmR,}
B14)

X2=ho('_hmR1—h9Ra

Hy=AR,+A4 sin ¢+m<thl+heRa>}
(B15)

Hy=ARy+-ho(—hs By Bs)

where

)

. m -1
h=gEmrE  MEargerd

=l 0D, h=fi-bd.
1

hgsf’gl%dbfb hembftdf. |

(B16)
hy=cudy
3 oo

5571

hy=cd,

thEccfc

m*=a(U* J
From equations (B4), (B7), (B12), (B14), and (B15),

G1=alR1—aﬁR2_a3Jl'—a4Jg+a5A sin @
B17)
W=y Rty Ryt Ji—ad,
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where
_ kb [—kE A
=gt [ TR (0-Hhuhe) o |
K THE
az=7cﬁ —T{l hﬁh~3+hohm:|
%E{L} heha - (B18)
a‘EEk’—l hihs
Then, from equation (B2),
1 '
Lim i [ 13— Eullula—o) [+ Kool +
Rl[Kl(huka—al)—Kz+(Kl—K4)A]+
Ro[Ky(hehs+-a)]+ A sin o[ Ky(1—ag)]—Kir’ L
(B19)

Lym— S (bt adl+ o | 1= Killuha—es) |-

R\[Ki(hehstas)] +R2[Kl(hﬁk1_al) — K+
(Kl_Kt)A] J

The various disturbance amplitude coefficients of equa-
tions (10) have now been obtained in terms of the coofficients
R., R, Ji, J; and the parameters A4 sin ¢ and 7/. From
equations (B1) and (B3),

Jiat+ gt Rig+Rie—=es
—JiatJia—Rie+Roey=0
JiestJseat+Rigt+ Bre=en
—Jig+Jree—Rieg+Eee5=0

(B20)

where
&t =1+B1—(B:1 K1+ B) (ahe—t) )
e =(B1 K+ Bs)(hihste)
&= (B K1+ Bs)(hehi—an)+ By(K,—K,)A—B;— B, K;
&=(B K1+ By)(hshs )
e=B1Kyr'—A sin o[(B1 K+ Bs)(1—a)]
es=1—(D1+ K1) (hhs—s)
&=D1+EK)(hhste,)

. (B21)

o= Dy ) b — )+ (Di— DA— Kot HE— KA

eg=(D1+E)(hehst)
ao=Kyr'—A sin o(D+K;)(1—ay) J
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J. _Rl(fléo— esee)—Ro(e1es—eaeq) where
! €€ €167
B22) di=e(ere5—esen) T e3(eres—erer) — e (eser—eeo) )
By (a6—eaer)—Rs(aes—eser)
Jy=— :250'—51:7 : 8= e (13— e3es) — ea(eaeg— er67)—ex(ser— ezeq)
8= e5( 26— €1€7)
- B24)
P Si= e creo—eacs) Tea(@acs—erer) —er(eser—eseo)
1= s =& &
8384— 0185 B23) 85 == e5( e16a— es€a) — &7 (6367 €3¢0) — €5 (e26s— €1 €7)
R, ifa— 0y ds=e1o(eses—€167) J
82548135 .
Equations (B11) to (B15), (B17), (B19), (B22), and (B23)
provide the formal solution of equations (B1) to (B10).
APPENDIX C
ATTENUATING-WAVE SOLUTION FOR CONSTANT-PRESSURE COMBUSTION
If terms of order M? are retained, equations (1) provide | and
the following relations for the unperturbed-flow quantities:
1'8111 T8I0’ 2 1)
By a1 . gz 1) tante]
__7?8in? p tan ¢
2 oY V P14} e—vaet e
pTS.a 1J_ 1 ‘l'z'bﬁ[[l2 L (04)
P~ 2 (—1)M? M (1+* tan’ )
U 203 73 tand ¢
a@ 2—(r—1)(r—1)M>*—(v*—1)r(+—1)M*+ . . . ] M1+ tan2 ®)
With these relations, equations (4) take the form ag=r[l—(r—1) tan? o]
By=vtM?, By=2YM?3, B;=1+[14+v(>—1)]M*
From these relations:
D1=—[1—’Y+1 '—].)ﬂl.2 )E1=(T_1)[1+7'%];TM2]
r (C1) tan —1) sin? o(r tan? p—1
K=K=(—1)M? K, h1h3+a4—-T_Zu‘T¢J hehy—e _("' ) 'yg(JTB e—1)
y—=1[ v=1, o] & 1, 7—1.. . A (Cs)
A2 eone ) B e Wm0, Iiigbaiie coselitrt o)
and equations (9) may be written
b =by=—k; M3 c.=cr=Ps, d.=k|(1+M?), dy=k}(1-+ M%) From equations (B21) and (C5),
N [V ne [D:—72k} (©2)
PGy — e, 3=y — W= g sin g cos gL+ tandy) )
€167 €466 Y0
If only the leading terms in powers of AM?* are retained, ) _
equations (B16) and (B18) provide the following relations: €165 €3€s (r—1) sm:;f;,:&naqo 1) - (Ce)
_ 72 tan? o - 7 tan ¢
fula=Mufs YMIA1+72 tan? o) Tubs=His YM3*(1+* tan? o) sa—as=ae—ag=—"1 o qev—em=04
sin? sin ¢ cos
heltr=heohao="g 32 heho=hehe="—27—

(C3)
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and from equations (B21), (B24), and (C6):

Since for constant-pressure combustion R = R,/vM? R®

sin o CoS 3 = R,/yM?, and so forth, the coefficients B, R®, J®, and J?

51=—{%{2—72 [((r+1)(1+7 tan® 9)— are obtained from equations (B22), (B23), (C6), and (C7).

2 tan? o(r—1)7(r tan? p—1)] With these coefficients determined, the remainder are

sin? o obtained from equations (B7), (B11) to (B14), (B17), and
6’='YM21- [(r—1)(r tan? o—1)+2(+1D)r(r tan® o+1)] (B19). The amplitude coefficients are

8y=—tan p[r'—2(r—1)(r tan? p—1)A4 sin ¢

s __—(r—1) tan ¢ sin®o(r tan? p—1) (€D
= oY
5 __(v41)(= tan® p}+1) sin®e
5= VM-
Sy= ——'t;gl};': [#/—(r—1)(r tan? p—1)A sin o]
R“)=:Al {(7—1)2(1' tan® p—1)24 sin —[r¥(7*4-27—1) tan? o+ r(r24-1)] -:_—,}
RO=J®=—= tzlm p {(-r’—l)(-r2 tan' p—1)A sin p+[r%(r—1) tan! o—27° tan® p—r(r+1)] ;}
Ja)=-—% {(7—1)2(1' tan® —1)24 sin g} [7(r—1)* tan* o+ (r2+27—1) tan? o+2] ;}
Li=—L, L=0
p
Nl=————A(1 +T§ tan? o) ((7—1)(1 tan? o—1)[(74-1)(+ tan? p+1)—7(r—1) tan? o(r tan® p~—1)] A sin o—

T{ 7 tan® p[r(r—1)? tant o+ +(r+1) tan? o+4]4-(r+1) }’T:,)

Ny= Z(;(-’I-—:’liy&tl??g;; {(T tan? o—1)[r(r+1)(r tan® o+ D+ (—1)(r tan® p— 1)]4 sin o+

77(2r—1) tan? p—(r—1) tan? p—1] I‘;,-}
G1=m {[(-r-i—l)’(‘r tan? o+1)*+7(r—1)* tan? o(r tan® p—1)*| 4 sin ¢—
(1) ton? ol 2r—1) tan' o) £

= A———((lerlf),i‘;‘g,i ) {(72—1)(1 tan® g—1)(r tan? p+1)A sin g+ [ri(r—1) tant p—27° tan® g—r(r+1)] 17-}

1=—‘N2: P2=N1

Gl I —G2
rtaneg ° rtane

Il_

Wl=—--i— {(‘r—])(‘r tan? o—1)[7(+—1) tan? o+ (++1)] A sin p—[2(37—1) tan? p+7(r+1)] -:_—,}

W,=_I.("__1A)ﬂ£ {2(-r tan® p—1)A sin o4 7{r tan? p}1] IT:}

X1=Ha=Wz, X2=*u71

Hi=Z { -1 tant o-H1)4 sin oHr(3r—1) tan (1) Z}

}

~ (C8)
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For constant-pressure combustion, {.=¢,=kiUt-+kiy,

ne= ks @ T0), mym Ry (T— V)], vkt iy e 022

.
kyy, and o=kUt+kjy. At the flame front where z.=Uk
and 2,=(U—V){, y.=n=0, the attenuation factors e
and e™™ are 1, and the arguments of the disturbance waves
have the form (k;Ut+kzy).

The procedure of reference 23 is utilized in reference 22 to
treat a similar interaction problem for consideration of
flame-front stability. It is assumed that there are first-
order perturbations in the laminar flame speed U (in the
present notation). Reference 22 presents results only for
the special case where the plane of polarization of the inci-
dent shear wave is in the plane #;, .—3 .(#=0°) and the
wave-number vector is parallel to the unperturbed ‘flame
front (¢=90°). The results of the present analysis were
compared with those of reference 22 for the case of an
absence of first-order perturbations in the laminar flame
speed and for the special case of =0° and »=90° without
heat-release perturbations. Although agreement as to sign
and magnitude is obteined for the shear-field velocity com-
ponents, apparently differences in sign occur for the potential-
field velocity-component amplitudes as indicated in the
following table:

Present | Anal of
analysis reg%s
tiy,
T —4 —4
? ’
20 —
T 14 iA
’
Yps -
T A A
D’ y 3
»
T 4 b

Consideration of conservation of momentum across the
flame front indicates that v,, /U and v, ,/U should be of the
same sign. The present analysis is in agreement with this
consideration.
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